The Psychology of Lineup Identifications

GARY L. WELLS

University of Alberta, Canada

A review is made of issues and data on eyewitness identifications, and a relative-judgment conceptualization is proposed. It is argued that eyewitnesses are prone to choose the lineup member who most resembles the perpetrator relative to other lineup members as evidenced by studies that manipulated similarity of lineup members. The relative-judgment strategy is fallacious because of the unpredictable occurrence of target-absent lineups and is not corrected fully by instructions to eyewitnesses. An extension of the relative-judgment conceptualization proposes an inverse relationship between the goodness of witnesses' memories (quality and quantity of relevant information available in memory) and eyewitnesses' tendencies to rely on relative judgments. This extended conceptualization was used to derive expectations regarding an experiment (N = 192 eyewitnesses) that used a blank lineup prior to presenting eyewitnesses with the actual lineup. The data indicated that a blank lineup can yield a diagnostically split set of eyewitnesses; those who made no identification when presented with a blank lineup were less likely to make false identifications on the actual lineup than either the witnesses who identified someone from the blank lineup or the witnesses who were not presented with a blank lineup. The blank lineup did not produce a significant loss in accurate identifications. The practical implications of using blank lineups and the theoretical utility of the relative-judgment conceptualization are discussed.

Throughout this century psychologists have been interested in the interface of psychology and law (for early examples, see Burt, 1931; Cady, 1924; Freud, 1906; Marston, 1924, Munsterberg, 1908; Whipple, 1909). Research on the psychology of eyewitness testimony is an example of this interface. Eyewitness research has shown a tremendous growth in the 1970s and generated a number of results that are of forensic import to criminal investigators and courts of law (Clifford & Bull, 1978; Loftus, 1979; Yarmey, 1979).

1This research was supported by research grant number 410-81-0400 from the Social Science and Humanities Research Council of Canada to the author.

2Requests for reprints should be sent to Dr. Gary Wells, Department of Psychology, University of Alberta, Edmonton, Alberta, Canada, T6G 2E9.

Copyright © 1984 by V. H. Winston & Sons, Inc. All rights reserved.
It is now becoming relatively common for experimental social and cognitive psychologists to be called on, usually by defense attorneys, to scrutinize some aspect of the eyewitness evidence and testify as an expert in court. This surge of interest by the legal community in the offerings of experimental/cognitive psychology makes it increasingly important that psychologists be familiar with a potent "system variable" (Wells, 1978) that is generally at issue in eyewitness cases, namely, the lineup. The lineup represents an extremely important tool in criminal investigation, and results from lineups are important to decisions made throughout the chain of prosecution procedures. The procedures and structures of lineups as well as the interpretation of lineup results is well suited to the expertise of experimental social and cognitive psychologists. As Doob (1980) points out, the conductance of a lineup can be likened to an experiment. In this case, it is an experiment conducted by police investigators, and the variables affecting the outcome are numerous. As such, the lineup is a proper domain for psychologists to contribute their expertise to the development of better experimental techniques (i.e., better lineups) so as to control for extraneous factors that contribute to error.

This article describes the basic issues in eyewitness identification, outlines empirical results in lineup research that could be useful for protecting the innocent suspect, introduces a conceptualization of relative judgment that can account for previous data, and reports a new study based on this conceptualization.

Basic Issues in Eyewitness Identification

There is no doubt that false identifications occur in actual criminal investigations; erudite case study documentation is readily available (see, e.g., Borchard, 1932; Brandon & Davies, 1973; Devlin, 1976; Frankfurter, 1927; O'Connor, 1974; Williams 1958). Unfortunately, case study approaches are ineffective indices of the problem since it is usually a complete chance and rare occurrence that exonerates the individual who is wrongfully imprisoned. For this reason, staged-crime research has been particularly fruitful. Staged crimes have the advantage of being meticulously preplanned and/or recorded so that the eyewitness' identifications and other testimony can be compared and contrasted with fact. The important thing to note at this point is that false identifications in staged crimes occur at rates as low as 12% (Leippke, Wells, & Ostrom, 1978) or as frequently as 70% (Lindsay & Wells, 1980), depending on various conditions of the crime and testing situations.

It is important, of course, to keep in mind that a false identification does not automatically convict anyone. However, eyewitness identification evidence is considered direct evidence, rather than circumstantial evidence. This gives eyewitness evidence a peculiarly powerful formal status in criminal justice proceedings. Even fingerprints are not direct evidence and, therefore, do not have the powerful status that exists for eyewitness evidence. Also, an eyewitness identification often initiates a concerted search for other evidence which may be circumstantial and, while insufficient on its own, helps create a prosecutor's case. In the case of an innocent suspect, the circumstantial evidence may have never been pursued had the false identification not occurred. Research on human judgment shows that when a person develops a hypothesis (e.g., from the identification), it leads to a search for confirming evidence and relative disregard for disconfirming evidence (see Einhorn & Hogarth, 1978). Thus, it is believed that the identification can create a "snowball of evidence."

Recent experiments in psychology highlight the dangers of obtaining false identifications. First, there is considerable evidence that false identifications are often assessed with as much confidence as are accurate identifications (see e.g., Brown, Defenbacher, & Sturgill, 1977; Clifford & Scott, 1978; Defenbacher, Brown, & Sturgill, 1978; Leippke et al., 1978; Lindsay & Wells, 1980; Lindsay, Wells, & Rumpel, 1981; Mulpass & Devine, 1981; Wells, Lindsay, & Ferguson, 1979; Wells, Ferguson, & Lindsay, 1981). The precise mechanisms giving rise to this unfortunate and counter intuitive state of affairs is not yet clear even though a weak or nonexistent relationship between confidence and accuracy in eyewitnesses was noted over 70 years ago (Munsterberg, 1908). Explanations have centered on such factors as the independence of variables influencing confidence and accuracy (Leippke, 1980; Wells & Murray, 1984), the low optimality of witnessing/testing conditions (Defenbacher, 1980), lack of appropriate experience in identifying strangers (Wells, Lindsay, & Ferguson, 1979) and the tendency to generate cognitions consistent with choice behavior (Wells et al., 1981).

Regardless of the mechanisms yielding poor confidence-accuracy relationships in eyewitness identifications, the implications are clear. How does a trier of fact make good decisions regarding the credibility of an identification if the confidence with which it is made is an unreliable predictor of accuracy? In a series of studies it has been shown that an eyewitness who makes a false identification is no less likely to be willing to testify under cross examination and is no less likely to persuade subject-jurors that he or she is accurate than is a eyewitness who in fact is accurate (Lindsay & Wells, 1980; Lindsay et al., 1981; Wells & Leippke, 1981; Wells, Lindsay, & Ferguson, 1979; Wells, Lindsay, & Tousignant, 1980). Indeed, the primary predictor of whether an eyewitness will be believed by subject-jurors is the witness' confidence (Wells et al., 1979; Wells et al., 1981). Although subject-jurors will abandon their overreliance on witness confidence when told by an expert that it is a useless cue to accuracy, it does not improve their discriminative abilities (Wells et al., 1980). Thus, it is clear from this research that once a false identification is made it is virtually undetectable unless some other form of evidence discredits the identification.
Criminal investigators are quick to argue that mistaken identifications are bound to occur on those very rare occasions where there is some striking resemblance between the innocent suspect and the actual offender. To the extent that this is true, little can be done. Striking resemblances are coincidences over which no one has control. However, the next sections clearly rebut this simplistic view and demonstrate that control can be achieved.

Similarity

The argument that false identifications are due to coincidental resemblances between the falsely identified suspect and the true offender has an undeniable element of truth. However, it is a small part of the general phenomenon. A survey of case studies reveals that false identifications are seldom associated with a striking resemblance between the true offender and the falsely identified person (Brandon & Davies, 1973). Staged crime studies confirm this observation. In the Alberta laboratories we have found repeatedly that the falsely identified person need not show much resemblance to the original offender at all, except as regards general characteristics (e.g., sex, approximate hair color and texture, complexion tone, general weight and height).

Because of the tendency for false identifications to occur for individuals who only show superficial resemblances, considerable treatment has been accorded to the use of physical similarity between the foils (i.e., distractors who are nonsuspects in a lineup) and the suspect. It has been argued that increased physical similarity between the suspect and the foils helps assure that the witness must use more than superficial cues (e.g., hair color, height, complexion) to make a positive identification (Doob & Kirshenbaum, 1973; Malpass & Devine, 1983; Wells, Leippe, & Ostrom, 1979). There are numerous documents of extreme dissimilarity in actual lineups (see e.g., Buckhout, Figueeroa, & Hoff, 1975; Doob & Kirshenbaum, 1973; Wall, 1965; Wells et al., 1979), thereby attesting to abuse in that domain.

Increased similarity between foils and suspect has the obvious benefit of helping protect the innocent suspect. Equally obvious, perhaps, is the fact that it also helps “protect” the guilty party. What was never obvious, a priori at least, is precisely how it protects the innocent suspect. It now seems clear that it protects the innocent suspect via spreading choices across lineup members and not via decreasing the witness’s propensity to make a choice (Lindsay & Wells, 1980). This seemingly trivial observation suggests something very important about the eyewitness: that the witness is influenced by a relative-judgment process. The term relative judgment refers to the fact that the witness seems to be choosing the lineup member who most resembles the witnesses’ memory to other lineup members. This is true even though witnesses are told that the criminal target may not be in the lineup and are given a no-choice option.

What is most important about the tendency toward relative judgments is that reliance on choosing the person who most resembles the criminal is necessarily going to produce an error whenever the true offender is absent from the lineup. Another implication of the relative-judgment process is that increased similarity can be effective protection for the innocent person only if the lineup contains nonsuspects. As noted earlier, increased similarity only spreads choices to other lineup members (rather than reducing the likelihood of choice). If all lineup members are suspects, increased similarity serves to protect a given suspect only by having other suspects share the danger of mistaken identity.

Construing eyewitness identifications as being influenced by relative judgments helps clarify the nature of the problem. Consider an experiment by Lindsay and Wells (1980). Eyewitnesses to a staged crime viewed lineups that did or did not contain the criminal and did or did not have similarity between the foils and the suspect. The lineups that did not contain the criminal are most pertinent here. In the criminal-absent lineups the suspect (chosen a priori) had a superficial resemblance to the criminal. When there was similarity between the foils and the suspect, the innocent suspect was identified as the criminal by 31% of the witnesses making a choice. When dissimilarity was produced (via changing the foils), however, the innocent suspect received 70% of the choices! In other words, the innocent suspect was relatively more similar to the criminal in the latter conditions and this served to increase the likelihood of obtaining incriminating evidence against him. Note, however, that it was not the innocent suspect’s similarity to the criminal that produced this profound increase in false identifications; that variable was constant across conditions. Instead it was the structure of the lineup in which the suspect’s relative similarity was varied.

Instructions to Witnesses

If the relative-judgment conceptualization is correct, it seems reasonable to expect that verbal manipulations could reduce the witnesses’ reliance on relative judgments. One way to do this is to make salient to the witness that the actual offender may be absent from the lineup. This should make it clear to the witness that a relative judgment (i.e., which person most looks like the criminal) can easily produce an error. Malpass and Devine (1981) conducted such a study. After observing a staged vandalism, half of their witnesses were told by the lineup conductor that he believed that the culprit was present in the lineup. The other half were told that the vandal might or might not be present. The results showed a robust reduction in the likelihood of false identifications in criminal-absent conditions (from 78% to 33%). This manipulation did not simply make witnesses more cautious since accurate identifications
member and one's recollection of the perpetrator) must exceed some cut-off or threshold in order to produce an identification response.

Given this characterization of the distinction between relative and absolute processing, a logical extension of the conceptualization would be to characterize absolute and relative processing as a continuum rather than a dichotomy. Further, a given witness' tendency to use primarily an absolute versus relative processing strategy should be influenced by many factors, one of which is the goodness of the witness' memorial representation of the perpetrator. Specifically, there should be an inverse relationship between the goodness of the witnesses' memory (quality and quantity of relevant information regarding the perpetrator available in the witness' memory) and the tendency to use relative judgment processes. The intuitive appeal of this proposition is readily apparent by two extreme examples. Suppose the task was to identify one's mother, for whom goodness of memory is high, from a lineup. Surely this task would not be controlled by relative-judgment processing. Suppose, however, that the task was to identify someone for whom goodness of memory is low, in that sex, approximate age, hair color and race were the only bits of retrievable information from memory. In this case absolute judgments would be difficult, except on these general physical characteristics, and one would be more prone to make relative judgments.

If it is true that there is an inverse relationship between the goodness of a witness' recollections of the perpetrator and the witness' tendency toward relative judgments, it should be possible to use information assessing those who are prone to relative judgments to aid predictions of who are the most credible eyewitnesses. The simplest way to assess those who are most prone to making relative judgments would be to present eyewitnesses first with a "blank" lineup. This is analogous to a signal detection task in which a "noise alone" trial is presented. Those persons who "false alarm" on that trial should be less credible on a subsequent trial than are those who do not make such an error. Thus, witnesses who choose someone from a blank lineup should be more prone to error on a second (actual) lineup than are those witnesses who make no choice from the blank lineup.

Relative Judgment Process: An Extension

It is possible to construe of the relative-judgment process as one that yields a response bias, specifically, a bias to choose someone from the lineup. This response bias results from a relative-judgment process because it would almost always be the case that someone in the lineup would be relatively more similar to original target than would others in the lineup. Indeed, there is nothing in the relative-judgment processing strategy that would lead to a witness to reject the lineup (i.e., make a nonidentification response). It is this characteristic that constitutes the main distinction between relative processing and absolute processing: absolute processing implies that a match (i.e., between a lineup

\[\text{\textbf{This raises a provocative question as to why an eyewitness who has such a poor recollection simply would not opt out of attempting an identification in the first place rather than use a relative-judgment process. There may be many factors involved here: The witness may not have good introspective access to the processes dominating his or her judgment or the lack of goodness in his or her recollection; there may be tacit pressures inherent in an identification task for making an identification; or, upon first narrowing the options to one lineup member via a relative judgment, the witness may engage in a constructive memory process of incorporating detailed characteristics of that lineup member into his or her recollection.}\]
Method

Subjects and Procedure

One hundred and ninety-eight introductory psychology students participated individually in exchange for course credit. On arrival, each participant was told that the experiment concerned performance on video games and was instructed to enter a cubicle down the hallway while the experimenter went to get “game sheets.” The participant was told not to begin play with the video game until the experimenter gave instructions. On arrival at the cubicle, the participant (hereafter called eyewitness) encountered the “thief,” actually a confederate, who was unhooking a video game from a TV monitor. Upon seeing the eyewitness, the confederate (hereafter referred to as the perpetrator) jerked the wires loose, placed the video game under his coat, and quickly exited. The perpetrator was in view of the eyewitness for approximately 7-8 seconds, looked directly at the eyewitness three times, and had to pass by the eyewitness (coming within .5 meters) in order to get out the door. Six eyewitnesses pursued the perpetrator. Their participation was terminated as they had to be debriefed immediately.

Two minutes after the event the experimenter returned with the game sheets. After noticing the absence of the video game, the experimenter asked what happened to the game. At this point no eyewitness failed to report that it had been taken. Some eyewitnesses said it had been “stolen,” most simply said someone took it. The eyewitnesses were then told that the theft had been staged for their benefit and that they were to assume that they had witnessed an actual crime. [Note: Murray & Wells (1982) used this paradigm with a variation in which some eyewitnesses were not debriefed at this point, rather they were led to believe the theft was real throughout the lineup identification phase. Their results generally support the current paradigm as a viable test of lineup variations.] The eyewitness was then asked to describe the person who took the video game. All eyewitnesses were then presented with a 6-person photographic array and asked to make an identification. Eyewitnesses were assigned randomly to one of four lineup conditions with the restriction of equal numbers in each condition.

Control condition. The photo-array in the control conditions was either a perpetrator-present or perpetrator-absent lineup. Forty-eight eyewitnesses were shown the perpetrator-present lineup in which the perpetrator's position was balanced across the six possible positions eight times. The perpetrator-absent lineup was identical to the perpetrator-present lineup in all respects except that the perpetrator's picture was replaced by a picture of a similar person. Forty-eight eyewitnesses viewed the perpetrator-absent lineup in which the innocent replacement had his position balanced across the six possible positions eight times. All eyewitnesses were told to “examine these pictures closely. The person you saw take the computer game might not be present. If he is present, write down the number corresponding to his picture. If he is not present, indicate so by checking the lower box [marked “not present”] at the bottom of the page.” The perpetrator-present lineup had a functional size of 4.1 using the procedures for estimating functional size developed by Wells et al. (1979). Using procedures developed by Malpass (1981) the effective size was 3.93. This means that the equivalent of approximately four lineup members (including the perpetrator) are confusable for the perpetrator on the basis of a general physical description (sex, race, general height, general weight, hair color, facial hair).

Blank-lineup conditions. The remaining 96 eyewitnesses were treated identically except that all were given a blank lineup prior to being shown either the perpetrator-present or perpetrator-absent lineup. A blank lineup is distinguished from a perpetrator-absent lineup in a subtle yet important way. First, although a blank lineup and a perpetrator-absent lineup are both characterized by not having the true perpetrator as a member, the absence of the perpetrator in a blank lineup is known to be true (i.e., known by lineup constructors) in actual cases whereas the perpetrator-absent lineup erroneously is thought by lineup constructors to contain the perpetrator. In actual cases a perpetrator-absent lineup is only distinguishable from a perpetrator-present lineup in a probabilistic sense (based on prior evidence regarding the suspect and identification patterns by the eyewitness(es)). A blank lineup, however, is known to not contain the perpetrator because all lineup members are known-innocents. The only use of the blank lineup is to see if the eyewitness is prone to simply choose someone.4

Eyewitnesses were given the blank lineup with instructions identical to those used in the control conditions. Following the eyewitnesses' identification, the blank lineup condition eyewitnesses were told “now we would like for you to look at a second lineup. Again, the person who took the computer game might not be present.” The eyewitnesses were then presented with either the perpetrator present lineup (N = 48) or the perpetrator absent lineup (N = 48) and followed the same procedure as was followed by eyewitnesses in the control conditions.

Results

The proportions of accurate identifications, inaccurate identifications, incorrect nonidentifications and correct nonidentifications are reported in Table 1.

4The blank lineup had no members who were also members of the perpetrator-present or perpetrator-absent lineups. Only one member of the blank lineup shared all of the general characteristics of hair color, facial hair, general weight and general height with the perpetrator. The other lineup members were different on one or more of these general characteristics.
Table 1

Distribution of Eyewitness Responses as Functions of Lineup Conditions and Response to Blank Lineup

<table>
<thead>
<tr>
<th>Blank lineup conditions</th>
<th>Distribution of responses in actual (second) lineup</th>
<th>Perpetrator present</th>
<th>Perpetrator absent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inaccurate identifications (37.5%)</td>
<td>Accurate ident.</td>
<td>33.3% (6)</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Inaccurate ident.</td>
<td>5.6% (1)</td>
<td>55.6% (10)</td>
</tr>
<tr>
<td></td>
<td>Incorrect nonident.</td>
<td>61.1% (11)</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Correct nonident.</td>
<td>*</td>
<td>44.4% (8)</td>
</tr>
</tbody>
</table>

Nonidentifications (62.5%)	Accurate ident.	60.0% (18)	*
	Inaccurate ident.	3.3% (1)	23.3% (7)
	Incorrect nonident.	36.7% (11)	*
	Correct nonident.	*	76.7% (23)

Non-blank-lineup conditions

<table>
<thead>
<tr>
<th>Distribution of responses in actual lineup</th>
<th>Perpetrator present</th>
<th>Perpetrator absent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nondiagnosed population (100%)</td>
<td>Accurate ident.</td>
<td>60.4% (29)</td>
</tr>
<tr>
<td></td>
<td>Inaccurate ident.</td>
<td>20.8% (10)</td>
</tr>
<tr>
<td></td>
<td>Incorrect nonident.</td>
<td>18.8% (9)</td>
</tr>
<tr>
<td></td>
<td>Correct nonident.</td>
<td>*</td>
</tr>
</tbody>
</table>

*Cannot occur.

Note: Frequencies in parentheses.

Data from those who were given a blank lineup show that 37.5% of the eyewitnesses who were shown the blank lineup made an identification and the remaining 62.5% made no identification when shown the blank lineup. The split of their data in Table 1 shows clear differences between these two populations (i.e., those who identified someone from the blank lineup versus those who did not) with regard to performance on the actual (second) lineup. Those who made an identification when shown the blank lineup were inferior to those who did not make such an identification in performance on: (a) accurate identifications of the perpetrator in perpetrator-present conditions, 33.3% vs. 60.0%, Z = 1.90, p < 0.05 one tailed, (b) incorrect non-identifications in perpetrator-present conditions, 61.1% vs. 36.7%, Z = 1.66, p < .05 one tailed, (c) inaccurate identifications in perpetrator-absent conditions, 55.6% vs. 23.3%, Z = 2.36, p < .05, and (d) correct non-identifications in perpetrator-absent conditions, 44.4% vs. 76.7%, Z = 2.36, p < .05. Collapsed across the perpetrator-present and perpetrator-absent lineups and collapsed across the types of error, 61.1% of the eyewitnesses who made identifications from the blank lineup made an error on the actual (second) lineup whereas only 31.7% of the eyewitnesses who did not identify someone from the blank lineup made an error on the actual lineup, Z = 2.94, p < .05.

Eyewitnesses in the no-blank-lineup conditions also show a distribution that is different from that of the eyewitnesses who were shown a blank lineup but did not make an identification. The no-blank-lineup condition eyewitnesses were inferior to the blank lineup condition eyewitnesses who made no blank lineup identification on (a) inaccurate identifications in the perpetrator-present conditions, 20.8% vs. 3.3%, Z = 2.71, p < .05, (b) correct non-identifications in perpetrator-absent conditions, 29.2% vs. 76.7%, Z = 4.80, p < .05, and (c) incorrect identifications in perpetrator-absent conditions 70.8% vs. 23.3%, Z = 4.80, p < .05. Inaccurate non-identifications in perpetrator-present lineups, however, were higher among eyewitnesses who made no identification when presented with a blank lineup than among eyewitnesses who were not given a blank lineup, 36.7% vs. 18.8%, Z = 1.72, p < .05 one-tailed. Collapsed across the perpetrator-present and perpetrator-absent lineups and collapsed across the types of errors, 55.2% of the no-blank-lineup condition eyewitnesses made errors on the actual lineup, whereas only 31.7% of the eyewitnesses who did not identify someone from the blank lineup made an error on the actual lineup, Z = 2.99, p < .05.

Finally, one practical concern of criminal investigators is that procedures that lessen the likelihood of false identifications may also lessen the likelihood of accurate identifications. Thus, it is important to know the extent to which the use of the blank lineup reduces the likelihood that the perpetrator would be identified in the second lineup in which the perpetrator was present. Collapsed across the factor of whether or not witnesses identified someone from the blank lineup, 50% (24 of 48) of the eyewitnesses who were first shown a blank lineup and then shown a perpetrator-present lineup made accurate identifications; without the blank lineup, 60.4% (29 of 48) made accurate identifications when shown the perpetrator-present lineup, Z = 1.03, n.s. Thus, there was no significant drop in the likelihood of accurate identifications as a function of the use of a blank lineup.

Discussion

The data obtained using a blank lineup procedure indicate that eyewitnesses who make identifications from a blank lineup are less credible on a subsequent lineup. The blank lineup successfully served to diagnose a portion of the population (in this case 62.5%) that on the average was 1.75 times more likely to make
an accurate identification (or correct non-identification) than was the remainder of the population. This is true regardless of whether or not the subsequent lineup contains the true perpetrator. This is consistent with the notion that a blank lineup can serve effectively as a lure for those who are prone to make relative judgments. The pattern of data is consistent with the extended version of the relative-judgments conceptualization which assumes that there is a negative relationship between the tendency for witnesses to use relative (cf. absolute) judgments and the quality of the recollection. Apparently, those who used relative judgments (as inferred by their choosing someone in the blank lineup) had a poorer recollection of the perpetrator in that they were (a) less likely to identify the perpetrator in a subsequent perpetrator-present lineup and (b) less likely to recognize the perpetrator's absence in a perpetrator-absent lineup than were those who did not identify someone from the blank lineup.

The relative-judgments conceptualization can account not only for the blank lineup data, but also is consistent with data on the effects of lineup instruction (e.g., Malpass & De Vine, 1981) as well as the dispersion effect in lineup similarity (e.g., Lindsay & Wells, 1980). Does the conceptualization go beyond this? It could be argued that the relative-judgment conceptualization helps account for the counter-intuitive data showing little or no relationship between eyewitness identification accuracy and eyewitness confidence. Specifically, the relative-judgments conceptualization might predict that an eyewitness' confidence in his or her identification is a positive function of the ease with which the recognition judgment is made. If one chooses between several alternatives in which the foils or distractors are easily rejected, one may gain subjective certainty that the chosen alternative must be correct. As noted before, however, this relative judgment heuristic is error prone because the correct target may be absent. Thus, it could be argued that the same processes that lead to choice also lead to confidence, which is consistent with Malpass and De Vine's (1981) high obtained correlation between choice and confidence. Choice and accuracy, however, are poorly related as are confidence and accuracy; indeed they can be related negatively in target-absent lineups. In general, the relative-judgment process is a poor strategy for making choices and inferring confidence in a lineup-identification situation.

Conclusions

Although the relative-judgment conceptualization of eyewitness identifications certainly is an oversimplification, it has heuristic value. The conceptualization helps clarify how similarity between lineup members affects the distribution of errors (e.g., Lindsay & Wells, 1980) as well as how instructions to eyewitnesses can affect their strategies and performance (e.g., Malpass & De Vine, 1981). The proposition that there is an inverse relationship between the goodness of a witness' recollection and the witness' tendency toward relative judgments is consistent with the data obtained using blank lineups and provides a salient rationale for using blank lineups. The relative-judgment conceptualization may also help explain why false identifications often are made of individuals who show little resemblance to the actual perpetrator; these cases may reflect the simple fact that the identified individual was similar to the perpetrator relative to other lineup members. The relative judgment conceptualization also may help explain the lack of correspondence between eyewitness identification accuracy and certainty.

Finally, although the conceptualization is somewhat crude at this point, some aspects of it are disconfirmable, a positive feature of any conceptualization. For example, it was proposed that relative judgment processing is made easier by dissimilarity among lineup members and that ease of judgment mediates certainty of judgment. If this is true, then lessening the similarity of lineup members relative to a given number of the lineup (who in turn superficially resembles the perpetrator) should increase the certainty of eyewitnesses. Note that this increase should be true regardless of whether or not the true perpetrator is in the lineup. Thus, although crude, the relative-judgment conceptualization can be used to testable hypotheses and predictions as well as serving as a practical working conception for decisions about the instructions, structure and procedures to be considered in the conductance of lineups.

References

